Comparison of First-Come First-Served and Optimization Based Scheduling Algorithms for Integrated Departure and Arrival Management

Bae-Seon Park*, Hyeonwoong Lee, and Hak-Tae Lee / Yeonju Eun and Daekeun Jeon Inha University / Korea Aerospace Research Institute

Zhifan Zhu / Hanbong Lee and Yoon C. Jung
Stinger Ghaffarian Technologies / NASA Ames Research Center

AIAA AVIATION 2018

Outline

- ➤ Background
- ➤ Two Scheduling Approaches
- ➤ Scheduling Result Comparison
- **≻** Conclusions

BACKGROUND

Background

- ►ICN, GMP, and CJU
 - Heavy traffic
- KARI is developing an integrated departure and arrival management system.
 - Schedulers (Dep., Arr.)
 - Taxi time estimation
 - Data management
 - Controller display

Motivation

- Scheduling algorithms are one of the key components.
 - The Extended First-Come First-Served (EFCFS) scheduler has been developed in Inha University.
 - The Mixed Integer Linear Programming (MILP) based scheduler has been developed in KARI in collaboration with NASA.
- Compare two different scheduling algorithms systematically
 - Cross verification
 - Examine the performance differences between EFCFS and MILP

TWO SCHEDULING APPROACHES

Extended First-Come First-Served Approach
Optimization Based Approach
Compatibility of the Two Algorithms
EFCFS Enhancements

Extended First-Come First-Served Approach*

- Sequential scheduling based on priority
- Schedule of the higher priority aircraft is frozen first.
- Departure sequence can be switched.
- Minimum delay solution for each flight

^{*} Park, B., Lee, H., and Lee, H., "Extended First-Come First-Served Scheduler for Airport Surface Operation," International Journal of Aeronautical and Space Sciences (IJASS), Vol.19 (2), 2018.

Optimization Based Approach*

- Based on 3-step approach
 - Scheduling problems of the Step 2 and 3 were formulated as MILP optimization

^{*} Eun, Y., Jeon, D., Lee, H., Jung, Y., Zhu, Z., Jeong, M., Kim, H., Oh, E., and Hong, S., "Optimization of Airport Surface Traffic: A Case-study of Incheon International Airport," *the 17th AIAA Aviation Technology, Integration and Operations (ATIO) Conference*, Denver, CO, 2017.

Optimization Based Approach

Runway scheduling

Taxiway scheduling

Decision variable: passage times at all intersections along the taxi routes

➤ Required separation between aircraft moving on the surface and other considerations about aircraft movements were all formulated as linear equality/inequality constraints.

Compatibility of the Two Algorithms

- Use the same predetermined routes
- > For arrival flights, taxi scheduling only
 - Estimated landing times are given.
- Common constraints
 - Earliest possible pushback times of departures
 - No deadlock in bi-directional taxiway links
 - Aircraft separation along the taxiways
 - Runway separation based on aircraft wake turbulence category (WTC)
 - Miles-In-Trails at selected fixes (MIT)

EFCFS Enhancements

Runway separation minima based on aircraft WTC*

EFCFS Enhancements

- > Applying MIT constraints
 - Extending the node-link from the runway to the metering fix

Added links from runways to departure fixes

Extra node-link for departure fix

SCHEDULING RESULT COMPARISON

Problem Set Scheduling Results

Computation Times

Incheon International Airport (ICN)

Problem Set

- > 40 departures and 20 arrivals around 1 hour at ICN
- Fleet mixes of all scenarios are equal
 - Departure: 14 Medium and 26 Heavy class aircraft
 - Arrival: 7 Medium and 13 Heavy class aircraft
- Arrival landing times were not adjusted
 - No landing delays
 - Taxi delays can be added while taxiing from runway exits to gates
- Randomly generated 100 scenarios
 - Gate departure times, estimated landing times, and gate numbers (Taxi routes) are randomly assigned.

Problem Set

> Runways and departure fixes

Departure fixes	Runways	# of flights	MIT
East	15R/33L	5	Χ
South East		5	Х
South	15R/33L	6	0
	16/34	9	
West	16/34	15	0

MIT constraints

- 15 nautical miles
- Applied to the West and South fixes
- The East and South East fixes were unconstrained

Scheduling Results

- Accumulated results for 100 scenarios
- Case 1
 - Without MIT constraints (2 mins / 3 mins)
- Case 2
 - With MIT constraints (2 mins / 3 mins)
- Case 3
 - Artificially increased runway separation minima without MIT constraints for takeoffs (2 \rightarrow 5 mins / 3 \rightarrow 10 mins)

- Delay distributions
 - MILP shows smaller average runway takeoff delay

* Delay definitions

- 1. Gate delay
 - = Calculated push-back time Original push-back time
- 2. Takeoff delay
 - = Calculated takeoff time Original takeoff time
- 3. Original takeoff time
 - = Original push-back time + Unimpeded taxi time

- Maximum delay distributions
 - MILP has better performances than EFCFS
 - EFCFS is slightly shifted to the right side

Gate departure delay

- Distribution of makespan differences
 - MILP shows slightly better performance

Delay distributions

- EFCFS has more flights with 5 10 minutes runway takeoff delays
- MILP has more flights with the runway takeoff delays in 1 minute

Case 1

- Maximum delay distributions
 - The difference between MILP and EFCFS became smaller than Case 1

- Distribution of makespan differences
 - MILP shows slightly better performance

Delay distributions

- EFCFS shows larger average delays for both gate departure and runway takeoff
- EFCFS has more flights with the delays larger than 70 minutes

Runway takeoff delay

- Maximum delay distributions
 - EFCFS produced larger maximum delays
 - Distributions of EFCFS are shifted to the right side

Runway takeoff delay

- Distribution of makespan differences
 - The Makespan differences are biased in the positive direction
 - MILP shows much better performance with large runway separations

Computation Times

- Case 1 (No MIT)
 - EFCFS: 0.82 seconds
 - MILP: 6.39 seconds

- * Desktop specification Intel i7-6820HQ, 2.79 GHz / 32GB RAM
- Case 2 (with MIT)
 - EFCFS: 0.99 seconds
 - MILP: 9.22 seconds

Scheduling results – Summary

- **MILP**
 - Slightly smaller average and maximum takeoff delays
 - Slightly smaller average makespans
- > EFCFS is about 10 times faster for the given problem size.
- ➤ MILP's advantage is more noticeable in high delay situations.
- ➤ Applying MIT constraints
 - The differences in results between EFCFS and MILP became smaller.
 - The computation times of MILP were increased.

CONCLUSIONS

Conclusions

- >Two different scheduling approaches were compared
 - Common constraints were considered
 - 100 scenarios were randomly generated
- ➤ MILP generally showed better performance in terms of minimizing delays, but the differences were small.
- > EFCFS is much faster in computational performance
 - Real time situations
 - Scheduling large number of aircraft

Future Research Plans

- Testing more scenarios considering higher delay such as operations with severe weather condition or future traffic demand
- Handling uncertainty
 - Add buffer times
 - Update periodically with fast-time simulation
 - Use probabilistic model

Questions?

